

 Navigation

 	
 index

 	
 next |

 	Raven 5.4.0.dev0 documentation

raven-python

Raven is a standalone (and the official) Python client for Sentry [http://www.getsentry.com/].

This version of Raven requires Sentry 7.0 or newer.

Users Guide

	Install
	Requirements

	Configuration
	Configuring the Client

	The Sentry DSN

	Client Arguments

	Sanitizing Data

	A Note on uWSGI

	Usage
	Capture an Error

	Adding Context

	Testing the Client

	Client API

	Integrations
	Bottle

	Celery

	Django

	Flask

	Logbook

	Logging

	Pylons

	Pyramid

	WSGI Middleware

	ZeroRPC

	Zope/Plone

	Tornado

	Transports
	Builtin Transports

	Other Transports

Developers

	Contributing
	Setting up an Environment

	Running the Test Suite

	Contributing Back Code

Reference

	Changelog

Supported Platforms

	Python 2.6

	Python 2.7

	Python 3.2

	Python 3.3

	PyPy

	Google App Engine

About Sentry

Sentry provides you with a generic interface to view and interact with your error logs. With this
it allows you to interact and view near real-time information to discover issues and more
easily trace them in your application.

More information about Sentry can be found at http://www.getsentry.com/

Resources

	Documentation [http://raven.readthedocs.org/]

	Bug Tracker [http://github.com/getsentry/raven-python/issues]

	Code [http://github.com/getsentry/raven-python]

	Mailing List [https://groups.google.com/group/getsentry]

	IRC (irc.freenode.net, #sentry)

Deprecation Notes

Milestones releases are 1.3 or 1.4, and our deprecation policy is to a two version step. For example,
a feature will be deprecated in 1.3, and completely removed in 1.4.

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

Install

If you haven’t already, start by downloading Raven. The easiest way is with pip:

pip install raven --upgrade

Or with setuptools:

easy_install -U raven

Requirements

If you installed using pip or setuptools you shouldn’t need to worry about requirements. Otherwise
you will need to install the following packages in your environment:

	simplejson

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

Configuration

This document describes configuration options available to Sentry.

Configuring the Client

Settings are specified as part of the initialization of the client.

As of Raven 1.2.0, you can now configure all clients through a standard DSN
string. This can be specified as a default using the SENTRY_DSN environment
variable, as well as passed to all clients by using the dsn argument.

from raven import Client

Read configuration from the environment
client = Client()

Manually specify a DSN
client = Client('http://public:secret@example.com/1')

A reasonably configured client should generally include a few additional settings:

import raven

client = raven.Client(
 dsn='http://public:secret@example.com/1'

 # inform the client which parts of code are yours
 # include_paths=['my.app']
 include_paths=[__name__.split('.', 1)[0]],

 # pass along the version of your application
 # release='1.0.0'
 # release=raven.fetch_package_version('my-app')
 release=raven.fetch_git_sha(os.path.dirname(__file__)),
)

New in version 5.2.0: The fetch_package_version and fetch_git_sha helpers.

The Sentry DSN

The DSN can be found in Sentry by navigation to Account -> Projects -> [Project Name] -> [Member Name]. Its template resembles the following:

'{PROTOCOL}://{PUBLIC_KEY}:{SECRET_KEY}@{HOST}/{PATH}{PROJECT_ID}'

It is composed of six important pieces:

	The Protocol used. This can be one of the following: http or https.

	The public and secret keys to authenticate the client.

	The hostname of the Sentry server.

	An optional path if Sentry is not located at the webserver root. This is specific to HTTP requests.

	The project ID which the authenticated user is bound to.

Client Arguments

The following are valid arguments which may be passed to the Raven client:

dsn

A sentry compatible DSN.

dsn = 'http://public:secret@example.com/1'

project

Set this to your Sentry project ID. The default value for installations is 1.

project = 1

public_key

Set this to the public key of the project member which will authenticate as the
client. You can find this information on the member details page of your project
within Sentry.

public_key = 'fb9f9e31ea4f40d48855c603f15a2aa4'

secret_key

Set this to the secret key of the project member which will authenticate as the
client. You can find this information on the member details page of your project
within Sentry.

secret_key = '6e968b3d8ba240fcb50072ad9cba0810'

site

An optional, arbitrary string to identify this client installation.

site = 'my site name'

name

This will override the server_name value for this installation. Defaults to socket.gethostname().

name = 'sentry_rocks_' + socket.gethostname()

release

The version of your application. This will map up into a Release in Sentry.

release = '1.0.3'

exclude_paths

Extending this allow you to ignore module prefixes when we attempt to discover which function an error comes from (typically a view)

exclude_paths = [
 'django',
 'sentry',
 'raven',
 'lxml.objectify',
]

include_paths

For example, in Django this defaults to your list of INSTALLED_APPS, and is used for drilling down where an exception is located

include_paths = [
 'django',
 'sentry',
 'raven',
 'lxml.objectify',
]

list_max_length

The maximum number of items a list-like container should store.

If an iterable is longer than the specified length, the left-most elements up to length will be kept.

Note

This affects sets as well, which are unordered.

list_max_length = 50

string_max_length

The maximum characters of a string that should be stored.

If a string is longer than the given length, it will be truncated down to the specified size.

string_max_length = 200

auto_log_stacks

Should Raven automatically log frame stacks (including locals) for all calls as
it would for exceptions.

auto_log_stacks = True

processors

A list of processors to apply to events before sending them to the Sentry server. Useful for sending
additional global state data or sanitizing data that you want to keep off of the server.

processors = (
 'raven.processors.SanitizePasswordsProcessor',
)

Sanitizing Data

Several processors are included with Raven to assist in data sanitiziation. These are configured with the
processors value.

	
raven.processors.SanitizePasswordsProcessor

	Removes all keys which resemble password, secret, or api_key
within stacktrace contexts, HTTP bits (such as cookies, POST data,
the querystring, and environment), and extra data.

	
raven.processors.RemoveStackLocalsProcessor

	Removes all stacktrace context variables. This will cripple the functionality of Sentry, as you’ll only
get raw tracebacks, but it will ensure no local scoped information is available to the server.

	
raven.processors.RemovePostDataProcessor

	Removes the body of all HTTP data.

A Note on uWSGI

If you’re using uWSGI you will need to add enable-threads to the default invocation, or you will need to switch off of the threaded transport.

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

Usage

Capture an Error

from raven import Client

client = Client('http://dd2c825ff9b1417d88a99573903ebf80:91631495b10b45f8a1cdbc492088da6a@localhost:9000/1')

try:
 1 / 0
except ZeroDivisionError:
 client.captureException()

Adding Context

A few helpers exist for adding context to a request. These are most useful within a middleware, or some kind of context wrapper.

If you're using the Django client, we already deal with this for you.
class DjangoUserContext(object):
 def process_request(self, request):
 client.user_context({
 'email': request.user.email,
 })

 def process_response(self, request):
 client.context.clear()

See also:

	Client.extra_context

	Client.http_context

	Client.tags_context

Testing the Client

Once you’ve got your server configured, you can test the Raven client by using its CLI:

raven test <DSN value>

If you’ve configured your environment to have SENTRY_DSN available, you can simply drop
the optional DSN argument:

raven test

You should get something like the following, assuming you’re configured everything correctly:

$ raven test http://dd2c825ff9b1417d88a99573903ebf80:91631495b10b45f8a1cdbc492088da6a@localhost:9000/1
Using DSN configuration:
 http://dd2c825ff9b1417d88a99573903ebf80:91631495b10b45f8a1cdbc492088da6a@localhost:9000/1

Client configuration:
 servers : ['http://localhost:9000/api/store/']
 project : 1
 public_key : dd2c825ff9b1417d88a99573903ebf80
 secret_key : 91631495b10b45f8a1cdbc492088da6a

Sending a test message... success!

The test message can be viewed at the following URL:
 http://localhost:9000/1/search/?q=c988bf5cb7db4653825c92f6864e7206$b8a6fbd29cc9113a149ad62cf7e0ddd5

Client API

	
class raven.base.Client(dsn=None, raise_send_errors=False, transport=None, **options)

	The base Raven client.

Will read default configuration from the environment variable
SENTRY_DSN if available.

>>> from raven import Client

>>> # Read configuration from ``os.environ['SENTRY_DSN']``
>>> client = Client()

>>> # Specify a DSN explicitly
>>> client = Client(dsn='https://public_key:secret_key@sentry.local/project_id')

>>> # Record an exception
>>> try:
>>> 1/0
>>> except ZeroDivisionError:
>>> ident = client.get_ident(client.captureException())
>>> print "Exception caught; reference is %s" % ident

	
build_msg(event_type, data=None, date=None, time_spent=None, extra=None, stack=None, public_key=None, tags=None, **kwargs)

	Captures, processes and serializes an event into a dict object

The result of build_msg should be a standardized dict, with
all default values available.

	
capture(event_type, data=None, date=None, time_spent=None, extra=None, stack=None, tags=None, **kwargs)

	Captures and processes an event and pipes it off to SentryClient.send.

To use structured data (interfaces) with capture:

>>> capture('raven.events.Message', message='foo', data={
>>> 'request': {
>>> 'url': '...',
>>> 'data': {},
>>> 'query_string': '...',
>>> 'method': 'POST',
>>> },
>>> 'logger': 'logger.name',
>>> }, extra={
>>> 'key': 'value',
>>> })

The finalized data structure contains the following (some optional)
builtin values:

>>> {
>>> # the culprit and version information
>>> 'culprit': 'full.module.name', # or /arbitrary/path
>>>
>>> # all detectable installed modules
>>> 'modules': {
>>> 'full.module.name': 'version string',
>>> },
>>>
>>> # arbitrary data provided by user
>>> 'extra': {
>>> 'key': 'value',
>>> }
>>> }

	Parameters:	
	event_type – the module path to the Event class. Builtins can use
shorthand class notation and exclude the full module
path.

	data – the data base, useful for specifying structured data
interfaces. Any key which contains a ‘.’ will be
assumed to be a data interface.

	date – the datetime of this event

	time_spent – a integer value representing the duration of the
event (in milliseconds)

	extra – a dictionary of additional standard metadata

	stack – a stacktrace for the event

	tags – list of extra tags

	Returns:	a tuple with a 32-length string identifying this event

	
captureException(exc_info=None, **kwargs)

	Creates an event from an exception.

>>> try:
>>> exc_info = sys.exc_info()
>>> client.captureException(exc_info)
>>> finally:
>>> del exc_info

If exc_info is not provided, or is set to True, then this method will
perform the exc_info = sys.exc_info() and the requisite clean-up
for you.

kwargs are passed through to .capture.

	
captureMessage(message, **kwargs)

	Creates an event from message.

>>> client.captureMessage('My event just happened!')

	
captureQuery(query, params=(), engine=None, **kwargs)

	Creates an event for a SQL query.

>>> client.captureQuery('SELECT * FROM foo')

	
capture_exceptions(function_or_exceptions, **kwargs)

	Wrap a function in try/except and automatically call .captureException
if it raises an exception, then the exception is reraised.

By default, it will capture Exception

>>> @client.capture_exceptions
>>> def foo():
>>> raise Exception()

You can also specify exceptions to be caught specifically

>>> @client.capture_exceptions((IOError, LookupError))
>>> def bar():
>>> ...

kwargs are passed through to .captureException.

	
context

	Updates this clients thread-local context for future events.

>>> def view_handler(view_func, *args, **kwargs):
>>> client.context.merge(tags={'key': 'value'})
>>> try:
>>> return view_func(*args, **kwargs)
>>> finally:
>>> client.context.clear()

	
decode(data)

	Unserializes a string, data.

	
encode(data)

	Serializes data into a raw string.

	
extra_context(data, **kwargs)

	Update the extra context for future events.

>>> client.extra_context({'foo': 'bar'})

	
get_ident(result)

	Returns a searchable string representing a message.

>>> result = client.capture(**kwargs)
>>> ident = client.get_ident(result)

	
get_public_dsn(scheme=None)

	Returns a public DSN which is consumable by raven-js

>>> # Return scheme-less DSN
>>> print client.get_public_dsn()

>>> # Specify a scheme to use (http or https)
>>> print client.get_public_dsn('https')

	
http_context(data, **kwargs)

	Update the http context for future events.

>>> client.http_context({'url': 'http://example.com'})

	
is_enabled()

	Return a boolean describing whether the client should attempt to send
events.

	
send(auth_header=None, **data)

	Serializes the message and passes the payload onto send_encoded.

	
send_encoded(message, auth_header=None, **kwargs)

	Given an already serialized message, signs the message and passes the
payload off to send_remote for each server specified in the servers
configuration.

	
tags_context(data, **kwargs)

	Update the tags context for future events.

>>> client.tags_context({'version': '1.0'})

	
user_context(data)

	Update the user context for future events.

>>> client.user_context({'email': 'foo@example.com'})

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

Integrations

Note

Some integrations allow specifying these in a standard configuration, otherwise they are generally passed upon
instantiation of the Sentry client.

	Bottle
	Setup

	Usage

	Celery

	Django
	Support

	Setup

	Using with Raven.js

	Integration with logging

	404 Logging

	Message References

	WSGI Middleware

	Additional Settings

	Caveats

	Flask
	Installation

	Setup

	Settings

	Usage

	Getting the last event id

	Dealing with proxies

	Logbook

	Logging
	Usage

	Pylons
	WSGI Middleware

	Logger setup

	Pyramid
	PasteDeploy Filter

	Logger setup

	WSGI Middleware

	ZeroRPC
	Setup

	Compatibility

	Caveats

	Zope/Plone
	zope.conf

	Tornado
	Setup

	Usage

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

Bottle

Setup

The first thing you’ll need to do is to disable catchall in your Bottle app:

import bottle

app = bottle.app()
app.catchall = False

Note

Bottle will not propagate exceptions to the underlying WSGI middleware by default. Setting catchall to False disables that.

Sentry will act as Middleware:

from raven.contrib.bottle import Sentry
app = Sentry(app, client)

Usage

Once you’ve configured the Sentry application you need only call run with it:

run(app=app)

If you want to send additional events, a couple of shortcuts are provided on the Bottle request app object.

Capture an arbitrary exception by calling captureException:

>>> try:
>>> 1 / 0
>>> except ZeroDivisionError:
>>> request.app.sentry.captureException()

Log a generic message with captureMessage:

>>> request.app.sentry.captureMessage('hello, world!')

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

Celery

tl;dr register a couple of signals to hijack Celery error handling

from raven import Client
from raven.contrib.celery import register_signal, register_logger_signal

client = Client()

register a custom filter to filter out duplicate logs
register_logger_signal(client)

hook into the Celery error handler
register_signal(client)

The register_logger_signal function can also take an optional argument
`loglevel` which is the level used for the handler created.
Defaults to `logging.ERROR`
register_logger_signal(client, loglevel=logging.INFO)

A more complex version to encapsulate behavior:

import celery

class Celery(celery.Celery):
 def on_configure(self):
 import raven
 from raven.contrib.celery import register_signal, register_logger_signal

 client = raven.Client()

 # register a custom filter to filter out duplicate logs
 register_logger_signal(client)

 # hook into the Celery error handler
 register_signal(client)

app = Celery(__name__)
app.config_from_object('django.conf:settings')

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

Django

Support

While older versions of Django will likely work, officially only version 1.4 and newer are supported.

Setup

Using the Django integration is as simple as adding raven.contrib.django.raven_compat to your installed apps:

INSTALLED_APPS = (
 'raven.contrib.django.raven_compat',
)

Note

This causes Raven to install a hook in Django that will automatically report uncaught exceptions.

Additional settings for the client are configured using the RAVEN_CONFIG dictionary:

import raven
RAVEN_CONFIG = {
 'dsn': 'http://public:secret@example.com/1',
 'release': raven.fetch_git_sha(os.path.dirname(__file__)),
}

Once you’ve configured the client, you can test it using the standard Django
management interface:

python manage.py raven test

You’ll be referencing the client slightly differently in Django as well:

from raven.contrib.django.raven_compat.models import client

client.captureException()

Using with Raven.js

A Django template tag is provided to render a proper public DSN inside your templates, you must first load raven:

{% load raven %}

Inside your template, you can now use:

<script>Raven.config('{% sentry_public_dsn %}').install()</script>

By default, the DSN is generated in a protocol relative fashion, e.g. //public@example.com/1. If you need a specific protocol, you can override:

{% sentry_public_dsn 'https' %}

See Raven.js documentation [http://raven-js.readthedocs.org/] for more information.

Integration with logging [http://docs.python.org/2.7/library/logging.html#module-logging]

To integrate with the standard library’s logging [http://docs.python.org/2.7/library/logging.html#module-logging] module:

LOGGING = {
 'version': 1,
 'disable_existing_loggers': True,
 'root': {
 'level': 'WARNING',
 'handlers': ['sentry'],
 },
 'formatters': {
 'verbose': {
 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s'
 },
 },
 'handlers': {
 'sentry': {
 'level': 'ERROR',
 'class': 'raven.contrib.django.raven_compat.handlers.SentryHandler',
 },
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 'formatter': 'verbose'
 }
 },
 'loggers': {
 'django.db.backends': {
 'level': 'ERROR',
 'handlers': ['console'],
 'propagate': False,
 },
 'raven': {
 'level': 'DEBUG',
 'handlers': ['console'],
 'propagate': False,
 },
 'sentry.errors': {
 'level': 'DEBUG',
 'handlers': ['console'],
 'propagate': False,
 },
 },
}

Usage

Logging usage works the same way as it does outside of Django, with the
addition of an optional request key in the extra data:

logger.error('There was some crazy error', exc_info=True, extra={
 # Optionally pass a request and we'll grab any information we can
 'request': request,
})

404 Logging

In certain conditions you may wish to log 404 events to the Sentry server. To
do this, you simply need to enable a Django middleware:

MIDDLEWARE_CLASSES = (
 'raven.contrib.django.raven_compat.middleware.Sentry404CatchMiddleware',
 ...,
) + MIDDLEWARE_CLASSES

It is recommended to put the middleware at the top, so that any only 404s
that bubbled all the way up get logged. Certain middlewares (e.g. flatpages)
capture 404s and replace the response.

Message References

Sentry supports sending a message ID to your clients so that they can be
tracked easily by your development team. There are two ways to access this
information, the first is via the X-Sentry-ID HTTP response header. Adding
this is as simple as appending a middleware to your stack:

MIDDLEWARE_CLASSES = MIDDLEWARE_CLASSES + (
 # We recommend putting this as high in the chain as possible
 'raven.contrib.django.raven_compat.middleware.SentryResponseErrorIdMiddleware',
 ...,
)

Another alternative method is rendering it within a template. By default,
Sentry will attach request.sentry when it catches a Django exception.
In our example, we will use this information to modify the default
500.html which is rendered, and show the user a case reference ID. The
first step in doing this is creating a custom handler500() in your
urls.py file:

from django.conf.urls.defaults import *

from django.views.defaults import page_not_found, server_error

def handler500(request):
 """
 500 error handler which includes ``request`` in the context.

 Templates: `500.html`
 Context: None
 """
 from django.template import Context, loader
 from django.http import HttpResponseServerError

 t = loader.get_template('500.html') # You need to create a 500.html template.
 return HttpResponseServerError(t.render(Context({
 'request': request,
 })))

Once we’ve successfully added the request context variable, adding the
Sentry reference ID to our 500.html is simple:

<p>You've encountered an error, oh noes!</p>
{% if request.sentry.id %}
 <p>If you need assistance, you may reference this error as {{ request.sentry.id }}.</p>
{% endif %}

WSGI Middleware

If you are using a WSGI interface to serve your app, you can also apply a
middleware which will ensure that you catch errors even at the fundamental
level of your Django application:

from raven.contrib.django.raven_compat.middleware.wsgi import Sentry
from django.core.handlers.wsgi import WSGIHandler

application = Sentry(WSGIHandler())

Additional Settings

SENTRY_CLIENT

In some situations you may wish for a slightly different behavior to how Sentry
communicates with your server. For this, Raven allows you to specify a custom
client:

SENTRY_CLIENT = 'raven.contrib.django.raven_compat.DjangoClient'

SENTRY_CELERY_LOGLEVEL

If you are also using Celery, there is a handler being automatically registered
for you that captures the errors from workers. The default logging level for
that handler is logging.ERROR and can be customized using this setting:

SENTRY_CELERY_LOGLEVEL = logging.INFO
RAVEN_CONFIG = {
 'CELERY_LOGLEVEL': logging.INFO
}

Caveats

Error Handling Middleware

If you already have middleware in place that handles process_exception()
you will need to take extra care when using Sentry.

For example, the following middleware would suppress Sentry logging due to it
returning a response:

class MyMiddleware(object):
 def process_exception(self, request, exception):
 return HttpResponse('foo')

To work around this, you can either disable your error handling middleware, or
add something like the following:

from django.core.signals import got_request_exception
class MyMiddleware(object):
 def process_exception(self, request, exception):
 # Make sure the exception signal is fired for Sentry
 got_request_exception.send(sender=self, request=request)
 return HttpResponse('foo')

Note that this technique may break unit tests using the Django test client
(django.test.client.Client) if a view under test generates a
Http404 [http://docs.djangoproject.com/en/dev/topics/http/views/#django.http.Http404] or PermissionDenied exception,
because the exceptions won’t be translated into the expected 404 or 403
response codes.

Or, alternatively, you can just enable Sentry responses:

from raven.contrib.django.raven_compat.models import sentry_exception_handler
class MyMiddleware(object):
 def process_exception(self, request, exception):
 # Make sure the exception signal is fired for Sentry
 sentry_exception_handler(request=request)
 return HttpResponse('foo')

Gunicorn

If you are running Django with gunicorn [http://gunicorn.org/] and using the
gunicorn executable, instead of the run_gunicorn management command, you
will need to add a hook to gunicorn to activate Raven:

def when_ready(server):
 from django.core.management import call_command
 call_command('validate')

Circus

If you are running Django with circus [http://circus.rtfd.org/] and
chaussette [http://chaussette.readthedocs.org/] you will also need
to add a hook to circus to activate Raven:

def run_raven(*args, **kwargs):
 """Set up raven for django by running a django command.
 It is necessary because chaussette doesn't run a django command.

 """
 from django.conf import settings
 from django.core.management import call_command
 if not settings.configured:
 settings.configure()

 call_command('validate')
 return True

And in your circus configuration:

[socket:dwebapp]
host = 127.0.0.1
port = 8080

[watcher:dwebworker]
cmd = chaussette --fd $(circus.sockets.dwebapp) dproject.wsgi.application
use_sockets = True
numprocesses = 2
hooks.after_start = dproject.hooks.run_raven

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

Flask

Installation

If you haven’t already, install raven with its explicit Flask dependencies:

pip install raven[flask]

Setup

The first thing you’ll need to do is to initialize Raven under your application:

from raven.contrib.flask import Sentry
sentry = Sentry(app, dsn='http://public_key:secret_key@example.com/1')

If you don’t specify the dsn value, we will attempt to read it from your environment under
the SENTRY_DSN key.

You can optionally configure logging too:

import logging
from raven.contrib.flask import Sentry
sentry = Sentry(app, logging=True, level=logging.ERROR)

Building applications on the fly? You can use Raven’s init_app hook:

sentry = Sentry(dsn='http://public_key:secret_key@example.com/1')

def create_app():
 app = Flask(__name__)
 sentry.init_app(app)
 return app

You can pass parameters in the init_app hook:

sentry = Sentry()

def create_app():
 app = Flask(__name__)
 sentry.init_app(app, dsn='http://public_key:secret_key@example.com/1',
 logging=True, level=logging.ERROR)
 return app

Settings

Additional settings for the client can be configured using SENTRY_<setting name> in your application’s configuration:

class MyConfig(object):
 SENTRY_DSN = 'http://public_key:secret_key@example.com/1'
 SENTRY_INCLUDE_PATHS = ['myproject']

If Flask-Login [https://pypi.python.org/pypi/Flask-Login/] is used by your application (including Flask-Security [https://pypi.python.org/pypi/Flask-Security/]), user information will be captured when an exception or message is captured.
By default, only the id (current_user.get_id()), is_authenticated, and is_anonymous is captured for the user. If you would like additional attributes on the current_user to be captured, you can configure them using SENTRY_USER_ATTRS:

class MyConfig(object):
 SENTRY_USER_ATTRS = ['username', 'first_name', 'last_name', 'email']

email will be captured as sentry.interfaces.User.email, and any additionl attributes will be available under sentry.interfaces.User.data

You can specify the types of exceptions that should not be reported by Sentry client in your application by setting the RAVEN_IGNORE_EXCEPTIONS configuration value on your Flask app configuration:

class MyExceptionType(Exception):
 def __init__(self, message):
 super(MyExceptionType, self).__init__(message)

app = Flask(__name__)
app.config["RAVEN_IGNORE_EXCEPTIONS"] = [MyExceptionType]

Usage

Once you’ve configured the Sentry application it will automatically capture uncaught exceptions within Flask. If you
want to send additional events, a couple of shortcuts are provided on the Sentry Flask middleware object.

Capture an arbitrary exception by calling captureException:

>>> try:
>>> 1 / 0
>>> except ZeroDivisionError:
>>> sentry.captureException()

Log a generic message with captureMessage:

>>> sentry.captureMessage('hello, world!')

Getting the last event id

If possible, the last Sentry event ID is stored in the request context g.sentry_event_id variable.
This allow to present the user an error ID if have done a custom error 500 page.

<h2>Error 500</h2>
{% if g.sentry_event_id %}
<p>The error identifier is {{ g.sentry_event_id }}</p>
{% endif %}

Dealing with proxies

When your Flask application is behind a proxy such as nginx, Sentry will use the remote address from the proxy, rather than from the actual requesting computer.
By using ProxyFix from werkzeug.contrib.fixers [http://werkzeug.pocoo.org/docs/0.10/contrib/fixers/#werkzeug.contrib.fixers.ProxyFix] the Flask .wsgi_app can be modified to send the actual REMOTE_ADDR along to Sentry.

from werkzeug.contrib.fixers import ProxyFix
app.wsgi_app = ProxyFix(app.wsgi_app)

This may also require changes [http://flask.pocoo.org/docs/0.10/deploying/wsgi-standalone/#proxy-setups] to the proxy configuration to pass the right headers if it isn’t doing so already.

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

Logbook

Raven provides a logbook [http://logbook.pocoo.org] handler which will pipe
messages to Sentry.

First you’ll need to configure a handler:

from raven.handlers.logbook import SentryHandler

Manually specify a client
client = Client(...)
handler = SentryHandler(client)

You can also automatically configure the default client with a DSN:

Configure the default client
handler = SentryHandler('http://public:secret@example.com/1')

Finally, bind your handler to your context:

from raven.handlers.logbook import SentryHandler

client = Client(...)
sentry_handler = SentryHandler(client)
with sentry_handler.applicationbound():
 # everything logged here will go to sentry.
 ...

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

Logging

Sentry supports the ability to directly tie into the logging [http://docs.python.org/2.7/library/logging.html#module-logging] module. To
use it simply add SentryHandler to your logger.

First you’ll need to configure a handler:

from raven.handlers.logging import SentryHandler

Manually specify a client
client = Client(...)
handler = SentryHandler(client)

You can also automatically configure the default client with a DSN:

Configure the default client
handler = SentryHandler('http://public:secret@example.com/1')

Finally, call the setup_logging() helper function:

from raven.conf import setup_logging

setup_logging(handler)

Another option is to use logging.config.dictConfig:

LOGGING = {
 'version': 1,
 'disable_existing_loggers': True,

 'formatters': {
 'console': {
 'format': '[%(asctime)s][%(levelname)s] %(name)s %(filename)s:%(funcName)s:%(lineno)d | %(message)s',
 'datefmt': '%H:%M:%S',
 },
 },

 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 'formatter': 'console'
 },
 'sentry': {
 'level': 'ERROR',
 'class': 'raven.handlers.logging.SentryHandler',
 'dsn': 'http://public:secret@example.com/1',
 },
 },

 'loggers': {
 '': {
 'handlers': ['console', 'sentry'],
 'level': 'DEBUG',
 'propagate': False,
 },
 'your_app': {
 'level': 'DEBUG',
 'propagate': True,
 },
 }
}

Usage

A recommended pattern in logging is to simply reference the modules name for
each logger, so for example, you might at the top of your module define the
following:

import logging
logger = logging.getLogger(__name__)

You can also use the exc_info and extra={'stack': True} arguments on
your log methods. This will store the appropriate information and allow
Sentry to render it based on that information:

If you're actually catching an exception, use `exc_info=True`
logger.error('There was an error, with a stacktrace!', exc_info=True)

If you don't have an exception, but still want to capture a stacktrace, use the `stack` arg
logger.error('There was an error, with a stacktrace!', extra={
 'stack': True,
})

Note

Depending on the version of Python you’re using, extra might not be an acceptable keyword argument for a logger’s .exception() method (.debug(), .info(), .warning(), .error() and .critical() should work fine regardless of Python version). This should be fixed as of Python 3.2. Official issue here: http://bugs.python.org/issue15541.

While we don’t recommend this, you can also enable implicit stack capturing for all messages:

client = Client(..., auto_log_stacks=True)
handler = SentryHandler(client)

logger.error('There was an error, with a stacktrace!')

You may also pass additional information to be stored as meta information with
the event. As long as the key name is not reserved and not private (_foo) it
will be displayed on the Sentry dashboard. To do this, pass it as data
within your extra clause:

logger.error('There was some crazy error', exc_info=True, extra={
 # Optionally you can pass additional arguments to specify request info
 'culprit': 'my.view.name',

 'data': {
 # You may specify any values here and Sentry will log and output them
 'username': request.user.username,
 }
})

Note

The url and view keys are used internally by Sentry within the extra data.

Note

Any key (in data) prefixed with _ will not automatically output on the Sentry details view.

Sentry will intelligently group messages if you use proper string formatting. For example, the following messages would
be seen as the same message within Sentry:

logger.error('There was some %s error', 'crazy')
logger.error('There was some %s error', 'fun')
logger.error('There was some %s error', 1)

Note

Other languages that provide a logging package that is comparable to the
python logging [http://docs.python.org/2.7/library/logging.html#module-logging] package may define a Sentry handler. Check the
Extending Sentry [http://sentry.readthedocs.org/en/latest/developer/client/index.html]
documentation.

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

Pylons

WSGI Middleware

A Pylons-specific middleware exists to enable easy configuration from settings:

from raven.contrib.pylons import Sentry

application = Sentry(application, config)

Configuration is handled via the sentry namespace:

[sentry]
dsn=http://public:secret@example.com/1
include_paths=my.package,my.other.package,
exclude_paths=my.package.crud

Logger setup

Add the following lines to your project’s .ini file to setup SentryHandler:

[loggers]
keys = root, sentry

[handlers]
keys = console, sentry

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console, sentry

[logger_sentry]
level = WARN
handlers = console
qualname = sentry.errors
propagate = 0

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[handler_sentry]
class = raven.handlers.logging.SentryHandler
args = ('SENTRY_DSN',)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s,%(msecs)03d %(levelname)-5.5s [%(name)s] %(message)s
datefmt = %H:%M:%S

Note

You may want to setup other loggers as well.

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

Pyramid

PasteDeploy Filter

A filter factory for PasteDeploy [http://pythonpaste.org/deploy/] exists to allow easily inserting Raven into a WSGI pipeline:

[pipeline:main]
pipeline =
 raven
 tm
 MyApp

[filter:raven]
use = egg:raven#raven
dsn = http://public:secret@example.com/1
include_paths = my.package, my.other.package
exclude_paths = my.package.crud

In the [filter:raven] section, you must specify the entry-point for raven with the use = key. All other raven client parameters can be included in this section as well.

See the Pyramid PasteDeploy Configuration Documentation [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/paste.html] for more information.

Logger setup

Add the following lines to your project’s .ini file to setup SentryHandler:

[loggers]
keys = root, sentry

[handlers]
keys = console, sentry

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console, sentry

[logger_sentry]
level = WARN
handlers = console
qualname = sentry.errors
propagate = 0

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[handler_sentry]
class = raven.handlers.logging.SentryHandler
args = ('http://public:secret@example.com/1',)
level = WARNING
formatter = generic

[formatter_generic]
format = %(asctime)s,%(msecs)03d %(levelname)-5.5s [%(name)s] %(message)s
datefmt = %H:%M:%S

Note

You may want to setup other loggers as well. See the Pyramid Logging Documentation [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html] for more information.

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

WSGI Middleware

Raven includes a simple to use WSGI middleware.

from raven import Client
from raven.middleware import Sentry

application = Sentry(
 application,
 Client('http://public:secret@example.com/1')
)

Note

Many frameworks will not propagate exceptions to the underlying WSGI middleware by default.

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

ZeroRPC

Setup

The ZeroRPC integration comes as middleware for ZeroRPC. The middleware can be
configured like the original Raven client (using keyword arguments) and
registered into ZeroRPC’s context manager:

import zerorpc

from raven.contrib.zerorpc import SentryMiddleware

sentry = SentryMiddleware(dsn='udp://public_key:secret_key@example.com:4242/1')
zerorpc.Context.get_instance().register_middleware(sentry)

By default, the middleware will hide internal frames from ZeroRPC when it
submits exceptions to Sentry. This behavior can be disabled by passing the
hide_zerorpc_frames parameter to the middleware:

sentry = SentryMiddleware(hide_zerorpc_frames=False, dsn='udp://public_key:secret_key@example.com:4242/1')

Compatibility

	ZeroRPC-Python < 0.4.0 is compatible with Raven <= 3.1.0;

	ZeroRPC-Python >= 0.4.0 requires Raven > 3.1.0.

Caveats

Since sending an exception to Sentry will basically block your RPC call, you are
strongly advised to use the UDP server of Sentry. In any cases, a cleaner and
long term solution would be to make Raven requests to the Sentry server
asynchronous.

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

Zope/Plone

zope.conf

Zope has extensible logging configuration options.
A basic setup for logging looks like that:

<eventlog>
 level INFO
 <logfile>
 path ${buildout:directory}/var/{:_buildout_section_name_}.log
 level INFO
 </logfile>

 %import raven.contrib.zope
 <sentry>
 dsn YOUR_DSN
 level ERROR
 </sentry>
</eventlog>

This configuration keeps the regular logging to a logfile, but adds logging to sentry for ERRORs.

All options of raven.base.Client are supported. See usage-label

Nobody writes zope.conf files these days, instead buildout recipe does that.
To add the equivalent configuration, you would do this:

[instance]
recipe = plone.recipe.zope2instance
...
event-log-custom =
 %import raven.contrib.zope
 <logfile>
 path ${buildout:directory}/var/instance.log
 level INFO
 </logfile>
 <sentry>
 dsn YOUR_DSN
 level ERROR
 </sentry>

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

 	Integrations

Tornado

Setup

The first thing you’ll need to do is to initialize sentry client under
your application

 import tornado.web
 from raven.contrib.tornado import AsyncSentryClient

 class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.write("Hello, world")

 application = tornado.web.Application([
 (r"/", MainHandler),
])
 application.sentry_client = AsyncSentryClient(
 'http://public_key:secret_key@host:port/project'
)

Usage

Once the sentry client is attached to the application, request handlers
can automatically capture uncaught exceptions by inheriting the SentryMixin class.

import tornado.web
from raven.contrib.tornado import SentryMixin

class UncaughtExceptionExampleHandler(SentryMixin, tornado.web.RequestHandler):
 def get(self):
 1/0

You can also send events manually using the shortcuts defined in SentryMixin.
The shortcuts can be used for both asynchronous and synchronous usage.

Asynchronous

import tornado.web
import tornado.gen
from raven.contrib.tornado import SentryMixin

class AsyncMessageHandler(SentryMixin, tornado.web.RequestHandler):
 @tornado.web.asynchronous
 @tornado.gen.engine
 def get(self):
 self.write("You requested the main page")
 yield tornado.gen.Task(
 self.captureMessage, "Request for main page served"
)
 self.finish()

class AsyncExceptionHandler(SentryMixin, tornado.web.RequestHandler):
 @tornado.web.asynchronous
 @tornado.gen.engine
 def get(self):
 try:
 raise ValueError()
 except Exception as e:
 response = yield tornado.gen.Task(
 self.captureException, exc_info=True
)
 self.finish()

Tip

The value returned by the yield is a HTTPResponse obejct.

Synchronous

import tornado.web
from raven.contrib.tornado import SentryMixin

class AsyncExampleHandler(SentryMixin, tornado.web.RequestHandler):
 def get(self):
 self.write("You requested the main page")
 self.captureMessage("Request for main page served")

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

Transports

A transport is the mechanism in which Raven sends the HTTP request to the Sentry server. By default, Raven uses a threaded asynchronous transport, but you can easily adjust this by modifying your SENTRY_DSN value.

Transport registration is done as part of the Client configuration:

Use the synchronous HTTP transport
client = Client('http://public:secret@example.com/1', transport=HTTPTransport)

Options are passed to transports via the querystring.

All transports should support at least the following options:

	timeout = 1

	The time to wait for a response from the server, in seconds.

	verify_ssl = 1

	If the connection is HTTPS, validate the certificate and hostname.

	ca_certs = [raven]/data/cacert.pem

	A certificate bundle to use when validating SSL connections.

For example, to increase the timeout and to disable SSL verification:

SENTRY_DSN = 'http://public:secret@example.com/1?timeout=5&verify_ssl=0'

Builtin Transports

	
raven.transport.threaded.ThreadedHTTPTransport

	The default transport. Manages a threaded worker for processing messages asynchronously.

	
raven.transport.http.HTTPTransport

	A synchronous blocking transport.

	
raven.transport.eventlet.EventletHTTPTransport

	Should only be used within an Eventlet IO loop.

	
raven.transport.gevent.GeventedHTTPTransport

	Should only be used within a Gevent IO loop.

	
raven.transport.requests.RequestsHTTPTransport

	A synchronous transport which relies on the requests library.

	
raven.transport.tornado.TornadoHTTPTransport

	Should only be used within a Tornado IO loop.

	
raven.transport.twisted.TwistedHTTPTransport

	Should only be used within a Twisted event loop.

Other Transports

	aiohttp [https://github.com/getsentry/raven-aiohttp]

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Raven 5.4.0.dev0 documentation

Contributing

Want to contribute back to Sentry? This page describes the general development flow,
our philosophy, the test suite, and issue tracking.

(Though it actually doesn’t describe all of that, yet)

Setting up an Environment

Sentry is designed to run off of setuptools with minimal work. Because of this
setting up a development environment requires only a few steps.

The first thing you’re going to want to do, is build a virtualenv and install
any base dependancies.

virtualenv ~/.virtualenvs/raven
source ~/.virtualenvs/raven/bin/activate
make

That’s it :)

Running the Test Suite

The test suite is also powered off of py.test, and can be run in a number of ways. Usually though,
you’ll just want to use our helper method to make things easy:

make test

Contributing Back Code

Ideally all patches should be sent as a pull request on GitHub, and include tests. If you’re fixing a bug or making a large change the patch must include test coverage.

You can see a list of open pull requests (pending changes) by visiting https://github.com/getsentry/raven-python/pulls

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	Raven 5.4.0.dev0 documentation

Changelog

Version 5.4.2

	Remove scheme checking on transports.

	Added SENTRY_TRANSPORT to Flask and Django configurations.

Version 5.4.1

	Fixed packaging of 5.4.0 which erronously kept the aiohttp.py file in the wheel only.

Version 5.4.0

	Binding transports via a scheme prefix on DSNs is now deprecated.

	raven.conf.load has been removed.

	Upstream-related configuration (such as url, project_id, and keys) is now contained in RemoteConfig
attached to Client.remote

	The aiohttp transport has been moved to raven-aiohttp package.

Version 5.3.1

	Restored support for patching Django’s BaseCommand.execute.

Version 5.3.0

	The UDP transport has been removed.

	The integrated Sentry+Django client has been removed. This is now part of Sentry core.

	Server configuration must now be specified with a DSN.

	Upstream errors now have increased verbosity in logs.

	Unsent events now log to ‘sentry.errors.uncaught’.

	Django management commands should now effectively autopatch (when run from the CLI).

	Flask wrapper now includes user_context, tags_context, and extra_context helpers.

	Python version is now reported with modules.

Version 5.2.0

	Protocol version is now 6 (requires Sentry 7.0 or newer).

	Added release option to Client.

	Added fetch_git_sha helper.

	Added fetch_package_version helper.

	Added cookie string sanitizing.

	Added threaded request transport: “threaded+requests+http(s)”.

Version 5.1.0

	Added aiohttp transport.

	Corrected behavior with auto_log_stacks and exceptions.

	Add support for certifi.

	Expanded Flask support.

	Expanded Django support.

	Corrected an issue where processors were not correctly applying.

Version 5.0.0

	Sentry client protocol is now version 5.

	Various improvements to threaded transport.

Version 4.2.0

	SSL verification is now on by default.

	Rate limits and other valid API errors are now handled more gracefully.

	Added last_event_id and X-Sentry-ID header to Flask.

Version 4.1.0

	Added verify_ssl option to HTTP transport (defaults to False).

	Added capture_locals option (defaults to True).

	message can now be passed to capture* functions.

	Django <1.4 is no longer supported.

	Function object serialization has been improved.

	SanitizePasswordsProcessor removes API keys.

Version 4.0.0

	Sentry client protocol is now version 4.

Version 3.6.0

This changelog does not attempt to account for all changes between 3.6.0 and 3.0.0, but
rather focuses on recent important changes

	Transport modules paths have been refactored.

	The threaded transport is now the default.

	Client.context has changed. Please see documentation for new API.

	Client.user_context was added.

	Client.http_context was added.

	Client.extra_context was added.

	Client.tags_context was added.

	Flask support has been greatly improved.

	raven.contrib.celery.Client has been removed as it was invalid.

Version 3.0.0

Version 3.0 of Raven requires a Sentry server running at least version 5.1, as it implements
version 3 of the protocol.

Support includes:

	Sending ‘python’ as the platform.

	The ‘tags’ option (on all constructors that support options).

	Updated authentication header.

Additionally, the following has changed:

	Configuring the client with an empty DSN value will disable sending of messages.

	All clients should now check Client.is_enabled() to verify if they should send data.

	Client.create_from_text and Client.create_from_exception have been removed.

	Client.message and Client.exception have been removed.

	The key setting has been removed.

	The DEBUG setting in Django no longer disables Raven.

	The register_signals option in RAVEN_CONFIG (Django) is no longer used.

	A new helper, Client.context() is now available for scoping options.

	Client.captureExceptions is now deprecated in favor of Client.context.

	Credit card values will now be sanitized with the default processors.

	A new eventlet+http transport exists.

	A new threaded+http transport exists.

	PyPy is now supported.

	Django 1.5 should now be supported (experimental).

	Gevent 1.0 should now be supported (experimental).

	Python 2.5 is no longer supported.

	[Django] The skip_sentry attribute is no longer supported. A new option config option has replaced this: SENTRY_IGNORE_EXCEPTIONS.

Version 2.0.0

	New serializers exist (and can be registered) against Raven. See raven.utils.serializer for more information.

	You can now pass tags to the capture method. This will require a Sentry server compatible with the new
tags protocol.

	A new gevent+http transport exists.

	A new tornado+http transport exists.

	A new twisted+http transport exists.

	Zope integration has been added. See docs for more information.

	PasteDeploy integration has been added. See docs for more information.

	A Django endpoint now exists for proxying requests to Sentry. See raven.contrib.django.views for more information.

Version 1.9.0

	Signatures are no longer sent with messages. This requires the server version to be at least 4.4.6.

	Several fixes and additions were added to the Django report view.

	long types are now handled in transform().

	Improved integration with Celery (and django-celery) for capturing errors.

Version 1.8.0

	There is now a builtin view as part of the Django integration for sending events server-side
(from the client) to Sentry. The view is currently undocumented, but is available as {% url raven-report %}
and will use your server side credentials. To use this view you’d simply swap out the servers configuration in
raven-js and point it to the given URL.

	A new middleware for ZeroRPC now exists.

	A new protocol for registering transports now exists.

	Corrected some behavior in the UDP transport.

	Celery signals are now connected by default within the Django integration.

Version 1.7.0

	The password sanitizer will now attempt to sanitize key=value pairs within strings (such as the querystring).

	Two new santiziers were added: RemoveStackLocalsProcessor and RemovePostDataProcessor

Version 1.6.0

	Stacks must now be passed as a list of tuples (frame, lineno) rather than a list of frames. This
includes calls to logging (extra={‘stack’: []}), as well as explicit client calls (capture(stack=[])).

This corrects some issues (mostly in tracebacks) with the wrong lineno being reported for a frame.

Version 1.4.0

	Raven now tracks the state of the Sentry server. If it receives an error, it will slow down
requests to the server (by passing them into a named logger, sentry.errors), and increasingly
delay the next try with repeated failures, up to about a minute.

Version 1.3.6

	gunicorn is now disabled in default logging configuration

Version 1.3.5

	Moved exception and message methods to capture{Exception,Message}.

	Added captureQuery method.

Version 1.3.4

	Corrected duplicate DSN behavior in Django client.

Version 1.3.3

	Django can now be configured by setting SENTRY_DSN.

	Improve logging for send_remote failures (and correct issue created when
send_encoded was introduced).

	Renamed SantizePassworsProcessor to SanitizePassworsProcessor.

Version 1.3.2

	Support sending the culprit with logging messages as part of extra.

Version 1.3.1

	Added client.exception and client.message shortcuts.

Version 1.3.0

	Refactored client send API to be more easily extensible.

	MOAR TESTS!

Version 1.2.2

	Gracefully handle exceptions in Django client when using integrated
setup.

	Added Client.error_logger as a new logger instance that points to
sentry.errors.

Version 1.2.1

	Corrected behavior with raven logging errors to send_remote
which could potentially cause a very large backlog to Sentry
when it should just log to sentry.errors.

	Ensure the site argument is sent to the server.

Version 1.2.0

	Made DSN a first-class citizen throughout Raven.

	Added a Pylons-specific WSGI middleware.

	Improved the generic WSGI middleware to capture HTTP information.

	Improved logging and logbook handlers.

Version 1.1.6

	Corrected logging stack behavior so that it doesnt capture raven+logging
extensions are part of the frames.

Version 1.1.5

	Remove logging attr magic.

Version 1.1.4

	Correct encoding behavior on bool and float types.

Version 1.1.3

	Fix ‘request’ attribute on Django logging.

Version 1.1.2

	Corrected logging behavior with extra data to match pre 1.x behavior.

Version 1.1.1

	Handle frames that are missing f_globals and f_locals.

	Stricter conversion of int and boolean values.

	Handle invalid sources for templates in Django.

Version 1.1.0

	varmap was refactored to send keys back to callbacks.

	SanitizePasswordProcessor now handles http data.

Version 1.0.5

	Renaming raven2 to raven as it causes too many issues.

Version 1.0.4

	Corrected a bug in setup_logging.

	Raven now sends “sentry_version” header which is the expected
server version.

Version 1.0.3

	Handle more edge cases on stack iteration.

Version 1.0.2

	Gracefully handle invalid f_locals.

Version 1.0.1

	All datetimes are assumed to be utcnow() as of Sentry 2.0.0-RC5

Version 1.0.0

	Now only works with Sentry>=2.0.0 server.

	Raven is now listed as raven2 on PyPi.

Version 0.8.0

	raven.contrib.celery is now useable.

	raven.contrib.django.celery is now useable.

	Fixed a bug with request.raw_post_data buffering in Django.

Version 0.7.1

	Servers would stop iterating after the first successful post which was not the
intended behavior.

Version 0.7.0

	You can now explicitly pass a list of frame objects to the process method.

Version 0.6.1

	The default logging handler (SentryHandler) will now accept a set of kwargs to instantiate
a new client with (GH-10).

	Fixed a bug with checksum generation when module or function were missing (GH-9).

Version 0.6.0

	Added a Django-specific WSGI middleware.

Version 0.5.1

	Two minor fixes for the Django client:

	Ensure the __sentry__ key exists in data in (GH-8).

	properly set kwargs[‘data’] to an empty list when its a NoneType (GH-6).

Version 0.5.0

	Require servers on base Client.

	Added support for the site option in Client.

	Moved raven.contrib.django.logging to raven.contrib.django.handlers.

Version 0.4.0

	Fixed an infinite loop in iter_tb.

Version 0.3.0

	Removed the thrashed key in request.sentry for the Django integration.

	Changed the logging handler to correctly inherit old-style classes (GH-1).

	Added a client argument to raven.contrib.django.models.get_client().

Version 0.2.0

	auto_log_stacks now works with create_from_text

	added Client.get_ident

Version 0.1.0

	Initial version of Raven (extracted from django-sentry 1.12.1).

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	Raven 5.4.0.dev0 documentation

Index

 B
 | C
 | D
 | E
 | G
 | H
 | I
 | R
 | S
 | T
 | U

B

 	

 	build_msg() (raven.base.Client method)

C

 	

 	capture() (raven.base.Client method)

 	capture_exceptions() (raven.base.Client method)

 	captureException() (raven.base.Client method)

 	captureMessage() (raven.base.Client method)

 	

 	captureQuery() (raven.base.Client method)

 	Client (class in raven.base)

 	context (raven.base.Client attribute)

D

 	

 	decode() (raven.base.Client method)

E

 	

 	encode() (raven.base.Client method)

 	

 	extra_context() (raven.base.Client method)

G

 	

 	get_ident() (raven.base.Client method)

 	

 	get_public_dsn() (raven.base.Client method)

H

 	

 	http_context() (raven.base.Client method)

I

 	

 	is_enabled() (raven.base.Client method)

R

 	

 	raven.processors.RemovePostDataProcessor (built-in variable)

 	raven.processors.RemoveStackLocalsProcessor (built-in variable)

 	raven.processors.SanitizePasswordsProcessor (built-in variable)

 	raven.transport.eventlet.EventletHTTPTransport (built-in variable)

 	raven.transport.gevent.GeventedHTTPTransport (built-in variable)

 	

 	raven.transport.http.HTTPTransport (built-in variable)

 	raven.transport.requests.RequestsHTTPTransport (built-in variable)

 	raven.transport.threaded.ThreadedHTTPTransport (built-in variable)

 	raven.transport.tornado.TornadoHTTPTransport (built-in variable)

 	raven.transport.twisted.TwistedHTTPTransport (built-in variable)

S

 	

 	send() (raven.base.Client method)

 	

 	send_encoded() (raven.base.Client method)

T

 	

 	tags_context() (raven.base.Client method)

U

 	

 	user_context() (raven.base.Client method)

 Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

 _static/logo.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		Raven 5.4.0.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

integrations/rq.html

 Navigation

 		
 index

 		Raven 5.4.0.dev0 documentation »

Configuring RQ

Starting with RQ version 0.3.1, support for Sentry has been built in.

Usage

The simplest way is passing your SENTRY_DSN through rqworker:

$ rqworker --sentry-dsn="http://public:secret@example.com/1"

Custom Client

It’s possible to use a custom Client object and use your own worker process as an alternative to rqworker.

Please see rq‘s documentation for more information: http://python-rq.org/patterns/sentry/

 © Copyright 2016, David Cramer.
 Created using Sphinx 1.3.4.

